Tips for writing and debugging programs

Let’s get a couple of things out of the way. HAL, as seen in 2001: A Space Odyssey, pretty much doesn’t exist. Computers operate in a fashion that has little to do with language and much to do with mathematics. In fact, they were originally developed to model mathematical processes – put in a number or numbers and get a number back. Eventually someone figured out that other processes could be modeled mathematically and that a computer that could process math functions quickly enough could simulate some of these processes. However, only in a futuristic world can Scotty verbally give instructions in English to his computer; here and now, we have to instruct our computers in a pseudo-language somewhere between English and math.
While we could learn to ‘speak’ directly into the computer’s ‘language’, it would be extremely tedious, so we rely on translators called compilers to do the work for us. But they only go partway toward English. Our problem is, how do we go from our language to the language that our compiler expects? What follows is a method of organizing a program so that it is easier to program and easier to debug, if need be. My examples will all be geared toward the JAVA 2 language, which should be familiar enough at this point for you to follow.

Generally, the first step in solving a problem is to understand the problem. Since we think in English (or whichever language is your native one; I’m not trying to discriminate), then we should try to present a solution as much in that language as possible but with the form of our target language. Don’t worry about syntax or names, but try to get the logic elements in place. For example, suppose we had a problem where we needed to write a method that accepted a string and passed back a Boolean value to indicate if the string had an equal number of ‘(‘s and ‘)’s. In a near approximation of English (which we call pseudocode because it is like, but not exactly like, code) we could write:

Given String return Boolean

{

Start (_counter and)_counter at 0 // we know we need to count them

Loop through the string character by character

{

If the character is a “(“, increment (_counter

If the character is a “)”, increment)_counter

} Go to the next character

Out of characters, so compare the counters.

If the counters are equal return True otherwise return False

} That’s it, we’re done!

Notice that we can read that set of instructions in English and follow the steps to get the same results we want our computer to get. Our givens and results will become our method specification (sometimes called a prototype), so we stick that at the top and drop in the brackets for the method. Inside the method, we write our steps in English, enclosing statements within a loop or comparison in more brackets. It should be easy to replace the pseudocode with the JAVA equivalent:

public static boolean paren_check(String st) //Given String return Boolean

{

// Start (_counter and)_counter at 0 // we know we need to count them

int l_count = 0;

 int r_count = 0;

// Loop through the string character by character

for (int i = 0; st.length() < i; i++)

{

// If the character is a (, increment (_counter

if (st.charAt() = ‘(‘) lcount++;

// If the character is a), increment)_counter

if (st.charAt() = ‘)’) rcount++;

} // Go to the next character

// Out of characters, so compare the counters.

// If the counters are equal return True otherwise return False

return (l_count == r_count);

} //That’s it, we’re done!

Notice that I kept the pseudocode and turned it into comments. This is an effective way of generating meaningful, if perhaps too plentiful, comments for your program. Any programmer reading your comment, including yourself, would be able to visualize what the program is doing.
The basic approach to solving larger problems is to break it down into smaller ones and then solve the smaller problems and put them together to create the larger solution. In practice, it is easy to define many small steps, create code to satisfy them, and then be unable to put them all back together. The problem is that the steps (think methods here) were created out of context with the larger problem (think class or program) and may need some tweaking to fit with the other steps (methods). Instead, it is often beneficial to write ‘dummy code’ into the larger solution and then replace it with working code. For example, take the following pseudocode to open and read from a file:

Given filename return string

{

open filename

if file opens

{

loop through file until end of file

{

Read character

Add character to string

} end of file, we’re done

}

else there was an error opening the file

{

Print out error message

Return a “” so the calling program knows there was an error

}

Close the file

Return the string

} the end

Notice that I highlighted some of the pseudocode. You could safely leave that code unwritten (turn it into comments) when you convert the rest of the pseudocode into actual code. Your method will compile and even execute, though it won’t do much other than open a file and close it. You could put temporary output lines in the if statement so you could see if it was checking for errors correctly. This allows you to completely write and test some of your code before writing the rest, which is a nice side benefit of this approach. But the real power is that when you get around to writing the filler code (for the loop let’s say, in this example), you can test it and know that it will work in the larger program because the larger program has already been proven. Any errors that occur will be due to new code that you’ve added and any debugging you do will ensure that the new code functions with the existing code. Any other pieces of code that get written later (the error handling block, in this example) will also work not only with the larger program but all the parts previously coded. This technique is called top-down programming.
Sometimes it makes more sense to program bottom-up. For instance, you are part of a design team and you know what your code will have to do but the overall program hasn’t been put together yet. In this case, it is hoped that you have a good specification for your part. If you do, you can write a program that ‘fakes’ the missing code. It should test your code by calling it and giving it dummy values and print out the results. This way, you can run it to test that your code is working as designed. When the main program is done, your code can be simply added and it should work just fine. If it doesn’t, the usual problem is poor or changed specification leading to an error in the way the main program is calling your code. That’s not the only problem, but it’s a good place to start looking.

Top-down programming leads us into a discussion of top-down design. Sometimes you break down a task without really knowing how you will accomplish the part. So you deal with it a bit at a time, starting with the larger problem. For instance, you need to mail a document to a list of addresses, so you start your pseudocode like this:

Given document and listfile, return success

{

Open document

Open listfile

Loop through listfile until end is reached

{

Read a name

Mail document to name

} and go back through loop

All done, return any errors or success

}

Now you can go back and fill in some of the steps by replacing a line in pseudocode with more detail. For example, you could replace ‘Mail document to name’ with:

Open message

Put name in To: field

Print document in body

Send message

Notice that we have made a reasonable definition of how to mail a document even though there are still steps we have not fully defined. Because this is an iterative process, we can go back and define the steps that need more definition. Eventually, we will reach a point where we can actually start replacing pseudocode with code.

If you are iterating through this process and find that the code is getting lengthy and a little confusing to read, perhaps it will help to make the less detailed pseudocode into a method call (or function call, for the structured programmer) and the detailed pseudocode into a method (function). From our previous example, ‘Mail document to name’ becomes ‘Call mailDocumentToName’ and the method will use the detailed pseudocode:

mailDocumentToName

Given document already defined and name, return success

{

Open message

Put name in To: field

Print document in body

Send message

}

I highlighted the ‘already defined’ to point out that ‘document’ in this case does not need to be a parameter – I define it globally elsewhere in the program. However, I need to reference it, so it needs to be in the givens. The already defined reminds me not to put it in the argument list for the method. Also, this is the first example of pseudocode that I bothered to give a name – actually they all should have names but this is the first time I needed to make a reference to the name.

Using this top-down design approach you can code and test parts of your program before you have even figured out what all the detailed steps are. Just be sure that your general algorithms work, because once you start coding it can be difficult to change the higher level logic when the lower level (more detailed) code is already written.

I usually implement this top-down approach by leaving anything within curly braces unwritten until the code outside the curly braces is complete. That means I will leave the bodies of loops, conditionals and even methods blank until the enclosing code is tested and working. Sometimes the code outside the brackets depends on what happens inside the brackets, so I will put in dummy statements to ‘fake’ the results. For instance, a method call may expect a return value of True or False, but I don’t have the code in the method to return a real value, yet. I’ll just put in a line: return true; that will allow the method to be called and get a dummy result back until I write some actual code for it.

Leaving the subject of writing code, let us turn to how to debug. Despite our best efforts, there will be problems. They tend to fall into the categories of logic errors and syntax errors. The latter can be hard to detect sometimes, because they cause the former; if the compiler allows a program with a typo to compile, you may get some unexpected results even though you set up the logic correctly. There are specialized debugging tools, such as the debugger in jGRASP, which allow you to stop a program at key points, step through the statements, and keep track of the value of key variables. However, even without those facilities you can still insert output statements into your program and achieve much the same results.
When you are getting a bad result, you need to identify the statements in your program that can change that result. If there are only a few such statements, I’d go ahead and put an output statement after each one that prints out the result at that point. When your program runs, you will be able to see where the result begins to take on an unexpected value, which indicates the source of the error. If there are a lot of statements to check, I may use output statements at spaced intervals (or at statements that I suspect may cause the problem), and then pin it down after I have discovered the general location. Beware of output statements in loops; try to include a pause or the loop may quickly fill your screen with output scrolling by too fast to read. Imagine what that was like on a mainframe line printer!
Most syntax errors will announce themselves by causing a statement to fail to compile, or by causing a value to compute incorrectly, which you can find using the previous technique. However, a missing curly bracket (or whatever code block delimiter your language uses) can be a frustrating thing to find at best. Consider the following code block (and ignore that the statements are missing, we are interested in the curly braces):

Public static void myBuggyMethod(void)

{

while (something)

{

while (something else)

{

some stuff gets done here

}

 //} end of while *** OOOPS, comment slashes on wrong side of bracket ***

for (int i = 1; i < 100; i++)

{

if (color == blue)

{

repaint

}

else

{

strip old paint

repaint

}

}

}

If you follow the indentation, you can see what was intended, but a compiler doesn’t use that convention. Instead it goes merrily along and each time it encounters a curly brace that’s not inside a comment, it opens another level of ‘indentation’. It only closes a level when it reaches a closing curly brace. It doesn’t see a problem until the very end, when it finds it is not back at the main level. So to it, the above code looks like this:

Public static void myBuggyMethod(void)

{

while (something)

{

while (something else)

{

some stuff gets done here

}

 //} end of while *** OOOPS, comment slashes on wrong side of bracket ***

for (int i = 1; i < 100; i++)

{

if (color == blue)

{

repaint

}

else

{

strip old paint

repaint

}

}

}

?? Shouldn’t there be a closing bracket here???

So it complains that the method is missing a bracket when the actual problem is that the while loop is missing the bracket. Worse, if you simply add a bracket to the end, which will satisfy the compiler, your program will now work oddly because the for loop is now inside the outer while loop. To avoid this kind of problem, every time I open a code block with a curly brace, I go down a line and close it and then go back and fill in the code in between. That way I know that every opening brace has a matching closing brace. But, as in the example, sometimes a silly typo can negate one of my braces, or I can delete one by mistake. Then it can be difficult to tell which closing brace goes with which opening brace, even if I have been careful to maintain good indentation. Sometimes when braces are separated vertically by a lot of lines it is difficult to tell how they line up. The solution is to tag the braces with a comment so that you can tell the pairs apart. The tags are not important as long as they are unique and meaningful to you; the compiler doesn’t care what you put in comments. I give the following as an example:

Public static void myBuggyMethod(void)

// * start of method1 * //

{

while (something)

{ // loop1

while (something else)

{ // loop2

some stuff gets done here

} // loop2 ends

 //} loop 1 ends

for (int i = 1; i < 100; i++)

{ // loop3

if (color == blue)

{ // bluetrue

repaint

} // bluetrue ends

else

{ // bluefalse

strip old paint

repaint

} //bluefalse ends

} // loop3 ends
} // method1 ends
Now I still have the typo and get the error about the method, but I can quickly check each pair of braces (using the find or string search functions of my editor, if necessary) and will eventually notice that one pair has a problem. If the ending brace (and its comment) for loop1 was missing, it would be even easier to spot. These tags can clutter your program and, like too much commenting of other types, make it hard to read by burying the actual code in a sea of comments. My solution is to keep the tags only as long as necessary to debug and then remove all but the useful ones. The compiler doesn’t care; the program is the same to it with or without the comments, and you can always add them back in later if needed.
On that subject, maybe you wrote some test statements into your code. Perhaps they were some output statements to test results and you don’t need them anymore. But, if you are not through debugging there is a chance you will nee them again, so ‘comment them out’ instead of erasing them. In JAVA you can change a single line from code to comment simply by adding ‘//’ in front of it. You can take out whole blocks of lines by adding ‘/*’ at the front and ‘*/’ at the end but be careful you don’t comment around some code you actually need to run. If you ever need the code again, just remove the comment delimiters. That’s a lot easier than typing in the code again. When the program is done, you can search through your comments and remove any commented out code – though I tend to leave it in if the program may be modified in the future. You never know when it will be handy.
There are other tricks and techniques for writing code and debugging. Some, such as how to use an advanced debugger, are beyond the scope of this document. These are the basic methods that will serve you in most situations. You may have tricks of your own that will benefit others. If so, feel free to pass them on to me and I will update this document.
